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We investigate the structure of the invariant measure of space-time chaos by
adopting an ‘‘open-system’’ point of view. We consider large but finite windows
of formally infinite one-dimensional lattices and quantify the effect of the
interaction with the outer region by mapping the problem on the dynamical
characterization of localized perturbations. This latter task is performed by
suitably generalizing the concept of Lyapunov spectrum to cope with perturba-
tions that propagate outside the region under investigation. As a result, we are
able to introduce a ‘‘volume’’-propagation velocity, i.e., the velocity with which
ensembles of localized perturbations tend to fill volumes in the neighbouring
regions.
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ical simulations of chaotic models.

1. INTRODUCTION

Since the discovery of deterministic chaos, it has become clear that unpre-
dictable behaviour can not only be the outcome of a stochastic dynamics,
but also of a few nonlinearly-coupled degrees of freedom. Even more
important is to notice that these two classes of behaviour can be distin-
guished without making any assumption on the underlying model. This
is made possible by embedding a supposedly recorded time series
uj=u(t=jy) (where y is the sampling time) into a space of dimension L
(i.e., introducing the vector U (L)

j ={uj, uj+1,..., uj+L − 1}) and thereby esti-
mating the fractal dimension D(L). In stochastic processes, D(L)=L, since
the variables at different times cover virtually all the available dimensions
in phase space, if observed with a sufficiently high (and y-dependent)



resolution. In low-dimensional chaos, when L is increased, D(L) saturates
instead to a finite value because of the functional dependence among the
variables. This is the starting point of nonlinear time-series analysis, an
ensemble of tools, developed in the last years to reconstruct a deterministic
model starting from raw data. (1)

More subtle is the difference between stochastic and high-dimensional
deterministic dynamics, since D(L)=L in both cases. In this context, it is
still possible to distinguish between the two classes of behaviour, provided
that a more refined analysis, based on the effective, or coarse-grained,
dimension Dc(e, L) is developed, where e represents the resolution of the
coarse graining. More precisely, the distinction between stochastic dynam-
ics and deterministic chaos resides in the different dependence of Dc(e, L)
on e. In stochastic systems, the scale es below which Dc(e, L) 5 L is inde-
pendent of L. On the other hand, in (deterministic) space-time chaos, it has
been conjectured that new degrees of freedom appear only at the expense
of progressively increasing the observational resolution. A loose explana-
tion for this behaviour is based on the observation that the degrees of
freedom associated to far-away regions are almost decoupled from the
evolution in the observation point. (2) Although this statement looks very
reasonable, it is not at all easy to substantiate it with solid arguments.
Indeed, very little progress has been made in the last decade and what is
known is still mostly based on heuristic arguments.

Rigorous approaches to space-time chaos have been successfully
implemented only in simplified models such as lattices of coupled maps in
the weak-coupling regime. In these cases, the invariant measure of an infi-
nite dimensional system can be constructed by exploiting the thermody-
namic formalism in the high-temperature limit. (3–6) Here, we prefer to
follow a more heuristic route in the hope of being eventually able to
capture the relevant features of space-time chaos even in the strong cou-
pling regime. More precisely, in this paper, we attack the problem of
characterizing space-time chaos by constructing a spatial rather than a
temporal embedding, i.e., by referring to the hypothetical signal uj=u j(t),
where the time t is large enough to ensure convergence to the attractor,
while j now labels the lattice sites (for the sake of simplicity we limit our-
selves to considering one-dimensional lattices). Accordingly, the effective
dimension Dc(e, L) now counts the number of degrees of freedom that can
be resolved, with resolution e, in a window of length L embedded in a
supposedly infinite system. This problem is conceptually equivalent to the
previous one, the main difference being that time and space axes have been
exchanged. It is precisely this difference that allows us using the more
standard tools developed to investigate the invariant measure of chaotic
systems.
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In the investigation of space-time chaos, closed systems of finite length
L are typically considered. In such a context, the classical tools for the
characterization of chaotic dynamics such as the Lyapunov exponents
describing the evolution of infinitesimal perturbations, can be effectively
implemented. As a result, it has since long been recognized that a limit
Lyapunov spectrum does exist for L Q ., thereby inferring (from Kaplan–
Yorke and Pesin formulae) the extensivity of space-time chaos (7–11) since
both the fractal dimension and Kolmogorov–Sinai entropy are proportio-
nal to the system volume (length, in one dimension).

At variance with this approach, here we adopt an ‘‘open’’-system point
of view, i.e., the finite window of length L is part of an infinite system
whose evolution is taken into account as well. In a sense, the two methods
are reminiscent of the microcanonical and canonical ensembles of statistical
mechanics; the open-system approach is indeed a possible way (though not
the most effective one) to perform canonical simulations of Hamiltonian
systems. Unfortunately, at variance with equilibrium statistical mechanics,
here there is not a prescription such as the Boltzmann weight to estimate, a
priori, the probability of each configuration. All we have at our disposal is
the nonlinear dynamical law with the additional difficulty (in comparison
to the ‘‘closed’’-system approach) of having to deal with perturbations
propagating from the outer to the inner region and viceversa.

Collet and Eckmann (12) have developed a method that more than any
other has inspired us in developing the approach outlined in this paper.
Their idea is that the structure of the invariant measure in a window of
fixed length L at a given observational scale can be described by following
in time the convergence of a suitable ensemble of initial conditions towards
the attractor. In fact, such an evolving ‘‘cloud’’ of points provides a natural
covering of the attractor that becomes increasingly sharp upon time evolu-
tion. Turning the time dependence of infinitesimal ellipsoids into a depen-
dence on the observational resolution e is a possible way to explain the
Kaplan–Yorke formula in standard finite dimensional systems. However,
the extension of such ideas to open systems requires that the very concept
of Lyapunov spectrum be revisited so as to describe perturbations that
evolve also outside the region that is currently monitored. We shall see that
a meaningful characterization of the perturbation dynamics can be
obtained only by realizing that the problem involves two scaling param-
eters that must be simultaneously let diverge to infinity: the window length
L and the evolution time T. In fact, we end up introducing a Lyapunov
spectrum that, besides depending, as usual, on the ratio of the label of each
exponent by the length L, depends also on T/L. This is not simply an
additional technical difficulty, but the key element that allows mapping the
characterization of pertubation evolution onto the characterization of the
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invariant measure in spatially extended systems. In fact, expressing the
variable T in terms of the observational resolution allows shedding further
light on the dependence of the effective dimension Dc(e, L) on both L and
e. While our analysis does confirm the functional dependence conjectured
in refs. 13 and 14, we find different expressions for the coefficients.

A brief summary of the known results is presented in Section 2.
Section 3 is devoted to a detailed justification of the Kaplan–Yorke
formula by following an approach that can be most easily extended to open
systems. A relevant result of our analysis is the above mentioned extension
of the concept of Lyapunov spectrum: this issue is the core of Section 4,
where we also illustrate the implementation of the method in various
classes of coupled map lattices. Finally, in Section 5, we discuss the impli-
cations of the Lyapunov analysis on the fractal properties of the invariant
measures in open systems and briefly discuss the further corrections
expected to arise from the boundaries.

2. THE STATE OF THE ART

As already anticipated in the introduction, we aim at characterizing
the structure of the invariant measure of space-time chaos. For the sake of
simplicity, most of the analysis will be restricted to (one dimensional)
lattice systems. A detailed description of the scaling properties of a given
set is contained in the ‘‘effective’’ dimension

Dc(e)=−
dH

d ln e
, (1)

where H(e) is the entropy of the set covered with boxes of size e,
H=−; pi ln pi, pi being the probability of each box.2 As shown by Renyi

2 Rigorously speaking, one should refer to an optimal covering. We implicitly assume to have
made such a choice.

long ago, different definitions of entropy can be given, by replacing the
logarithmic average of pi in the H expression with averages of its moments.
As, in general, there are tiny differences among the various entropies, we
will always refer to H without specifying which average is being taken.

To our knowledge, the concept of a resolution-dependent entropy
was first introduced by Kolmogorov and Tikhomirov, (15) who called it
e-entropy. In principle, an e-dependent dimension is an ill-defined concept,
since it is not invariant upon change of space parametrization. For this
reason, one has to take the limit e Q 0. In fact, only in this limit, Dc(0)
becomes a dynamical invariant that is strictly related to other dynamical
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invariants such as the Lyapunov exponents. However, besides the asympo-
tic value Dc(0), also the possibly slow dependence on e at high resolutions
can be universal, thus conveying meaningful information about the struc-
ture of the set of interest. This is precisely one of the reasons why e-entropies
have been introduced to quantify the cardinality of different classes of
functions (such as, e.g., the entire functions). (12, 15)

In the study of spatially extended systems, one is faced with the diffi-
culty of accounting for the dependence on a further parameter besides e,
namely the system size L. However, previous studies of closed systems have
clearly revealed that, for sufficiently large L, the coarse grained dimension
is still an extensive quantity: (7–9)

Dc(0, L) 3 dL (2)

where d can be interpreted as the dimension density (i.e., the contribution
to the dimension per lattice site) that can be determined from the
Kaplan–Yorke formula (see next section).

In open systems, it is instead clear that Dc(0, L)=L, since the infini-
tely many degrees of freedom ruling the outer part of the chain act as a sort
of stochastic source. (16, 17) In order to understand how the two results can
be reconciled, it is necessary to investigate, in the case of open systems, the
simultaneous dependence on both e and L (within the closed system
approach, the resolution does not play an important role—see next
section). As long as e and L are respectively small and large enough, the
scaling dependence on the two parameters is expected to be universal.

The first consistent conjecture about this problem was formulated by
Korzinov and Rabinovich, (14)

Dc(e, L)=dL −
vd2

g
ln e − A, (3)

where d is again the dimension density, g is the Kolmogorov–Sinai entropy
density, (9) v is the propagation velocity of disturbances, and A is a non-
better-specified parameter. This equation parallels the analogous expres-
sion proposed by Tsimring for the symmetric problem of the dimension of
a scalar time series recorded at a single point. (13) One can notice that
Eq. (3) allows reconciling the apparently contradictory expectations for
closed and open systems. In fact, if the limit e Q 0 is taken before the limit
L Q ., Dc/L diverges (though, in reality, it could not become larger than
1—this inconsistency is due to the perturbative character of the above
formula); if the order of the limits is reversed, then, Dc/L converges to the
expected (closed system) value d.
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Unfortunately, the derivation of the above formula depends on several
assumptions that cannot be directly checked. Moreover, it is rather unlikely
that more accurate numerical simulations will provide clean enough data to
draw definite conclusions. It is therefore compelling to make some progress
on the theoretical side, even at the expense of introducing strong simplifi-
cations. This is the route already undertaken in ref. 18, where the limit case
of weakly coupled maps has been considered.

If the invariant measure is assumed to cover a linear subspace, it is
possible to obtain a detailed description of it. (19) In fact, under this approx-
imation, it is possible to implement global methods such as singular-value
decomposition (SVD) technique. In general, the usefulness of SVD is
limited by the presence of nonlinearities that induce bendings which, in
turn, do not permit extracting information about the local thickness of a
given set. Let us, for instance, imagine a slightly bended segment embedded
in a two-dimensional plane. SVD will tell us that the set of points belong-
ing to the segment is characterized by two non-zero orthogonal widths even
though the set is strictly one-dimensional. If one can restrict the discussion
to linear subspaces, this problem does not arise and a global method like
SVD can be effectively used to extract local information. In ref. 19, it has
been assumed that the invariant measure of the infinitely extended system
is the linear superposition of a subset of all possible modes in a given basis
(e.g., all Fourier modes with wavenumber smaller than a prescribed
threshold). The fraction d of the active modes is the dimension density of
this given space of functions. The corresponding problem of characterizing
the projection onto a space of finite width L can be addressed by comput-
ing the eigenvalues of a suitable correlation matrix. As a result, it has been
found that the observational resolution e and the effective dimension Dc are
connected by the scaling relation

ln e=−LF(Dc/L), (4)

where the function F(x) is identically zero for x < d, while it increases
monotonously for x > d, starting with a finite slope. Solving the above
equation with respect to x=Dc/L and expanding the resulting inverse
function, F−1(ln e) for small values of ln e, one finds the perturbative
expression

Dc(e, L)=dL −
ln e

b1
−

b2

b3
1L

(ln e)2, (5)

that has the same structure of Eq. (3). Thus, Eq. (4) appears as its natural
extension to arbitrarily small scales.
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The main drawback of this approach is the absence of any dynamics.
In particular there is no way to link the function F(x) to dynamical
invariants such as Lyapunov exponents.

A more suitable starting point is represented by the study of the
complex Ginzburg-Landau equation performed by Collet and Eckmann. (12)

They have rigorously proved that

DCE(e, L)=B0L+B1/e2 (6)

represents an upper bound to Dc. On the one hand, this formula confirms
the existence of a leading term that is proportional to the system size. On
the other hand, the above expression differs from the previous ones for
what concerns the leading correction, that diverges faster than logarithmi-
cally for e Q 0. The question whether such a difference is to be attributed to
the continuity of the space variable (and thus to the possibly larger number
of degrees of freedom) or it is due to technical difficulties in improving the
upper bound cannot be easily answered. On the basis of the results here
presented we argue that, for lattice systems, the upper bound Eq. (6) can be
improved, while for spatially continuous flows, the situation is yet unsettled
(for more recent results see also refs. 20 and 21).

The idea behind the derivation of Eq. (6) is the same that allows
proving the Kaplan–Yorke formula for standard finite-dimensional attrac-
tors: given a set of boxes that cover the attractor, we can obtain finer
coverings by simply letting each box evolve in time. We summarize the idea
in the next section, as it will be useful for the generalization to open
systems.

3. THE KAPLAN–YORKE FORMULA

In this section, we discuss a method that allows extending the Kaplan–
Yorke formula to open systems. It is both useful and necessary to start
from the simple context of a 2d chaotic map (such as, e.g., the Hénon
map). Let us cover the attractor with a square S0 of size O(1) (in general it
will be a hypercube) and let us denote with St its image after t time steps.
St provides a covering of the attractor at all times, even though stretching
and folding transform it into a long and thin sausage. It is natural to divide
St into boxes of size equal to its average width (for the sake of simplicity,
we do not take into account multifractal fluctuations, that would not
anyhow modify the following scaling arguments)

e=d2(t)=exp{l2t} (7)
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where l2 is the second, negative, Lyapunov exponent. This is the crux of
our argument, as it suggests how time evolution spontaneously introduces
an increasing resolution in phase-space. In fact, we can now estimate the
fractal dimension D(e) from the number of boxes N(e) needed to cover St

with resolution e,

D(e)=−
ln N
ln e

=−
ln(el1t/e)

ln e
=1 −

l1

l2
(8)

where l1 is the positive Lyapunov exponent (in the philosophy of neglect-
ing multifractal corrections, we do not distinguish between the positive
Lyapunov exponent and the topological entropy). St provides a meaningful
covering of the attractor only if the dynamics is invertible, otherwise the
above equation would represent only a (possibly rough) upper bound.
Eq. (8) is nothing but the well known Kaplan–Yorke formula in 2d maps.
It is worth recalling that although this derivation is rather sketchy, the
equality is rigorous, provided that D is interpreted as the information
dimension. (22)

This approach can be extended to higher dimensional maps, but it
requires an additional assumption that seems to be generally valid,
although not universally correct. Before discussing the most general case,
let us first add a decoupled, contracting direction to the previous system,
as this case helps clarifying the difficulties that arise in higher dimensions.
The length of St remains unchanged, while its transversal section becomes
an ellipse with two semi-axes of length d2=exp(l2t) and d3=exp(l3t),
respectively (l3 being the additional, negative, Lyapunov exponent). The
question now consists in choosing the size e that allows an optimal cover-
ing of St. In this special case, we know a priori that N(e) must not change,
since we have not modified the attractor itself. If we choose e=d3, the
resulting N(e) can be either much larger or smaller than before, depending
on the relative size of d2 and d3. The error of this choice is that the hidden
structures not yet resolved at time t are contained only along the second
direction and thus, we must fix e=d2.

In this case, the right result has been obtained because, in a sense, we
already knew the solution. Let us now refer to a generic finite-dimensional
system and let Np denote the number of positive Lyapunov exponents. An
initial hypercube S0 with edge-length O(1) covering the attractor is
stretched along the unstable directions and contracted along the stable
ones. Since the attractor is bounded along all directions, the ‘‘excess’’ of
length that is continuously produced along the unstable directions must be
folded along the contracting ones. The crucial point is the assumption that
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folding generically proceeds from the least to the most contracting direc-
tions. Technically, this is equivalent to assuming that all contracting direc-
tions are filled until Lk q ;k

l=1 ll < 0 (where the Lyapunov exponents are
implicitly ordered from the largest to the most negative one), while the
remaining most stable directions do not contribute (like the third direction
in the above example). Accordingly, the ‘‘right’’ box-size to be adopted in
the partitioning process of St is

e=exp(lmt) (9)

where m is the minimum k-value such that Lk < 0. From the corresponding
number of boxes of size e needed to cover St, it is readily found that

DKY=m − 1+
Lm − 1

lm
. (10)

This is the general form of the Kaplan–Yorke formula.
In spatially extended systems of large length L, the Lyapunov expo-

nent depends on the index l and L only through the scaling variable
r=l/L, i.e., ll=l(r). Accordingly, by neglecting the fractional correction
in Eq. (10), the dimension can be written as

DKY=dKYL (11)

where dKY, implicitly defined by the constraint >dKY
0 dr l(r)=0, can be

interpreted as a density of dimension (see also Eq. (2)). (9)

All of the above discussion can be summarized stating that the number
of boxes needed to cover an attractor with resolution e can be determined
by letting a ball of size O(1) evolve until its width along the mth direction
(determined by the vanishing of Lm) is equal to e itself. In other words,
Eq. (9) is the core of the argument, as it allows transforming the depen-
dence on t into a dependence on the resolution.

In the above discussion we have implicitly assumed that each Lyapu-
nov exponent is equal to its asymptotic value, independently of t (and thus
of the resolution). As long as each Lyapunov exponent exhibit a slow
dependence on time, all of the above discussion still applies, with the dif-
ference that the r.h.s. of Eq. (10) depends on e (through the hidden depen-
dence of the l’s on t). In other words we see that the Kaplan–Yorke
formula is ready to account not only for the asymptotic value of the fractal
dimension but also for possible dependencies on the observational resolu-
tion. This is precisely what happens in the case of open systems.

Before proceeding further in this direction, we need to introduce some
notations: let x|| and x+ denote two vectors defining the state variable on
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each lattice site, within, respectively, outside, the window of interest WL. As
in the previous discussion, the aim is to infer the fractal properties of
the attractor from the density P(t, x||, x+ ) at time t (the initial condition
P(0, x||, x+ ) being a constant distribution in a hypercube of radius order 1
that contains the attractor). The probability density can be usefully
rewritten as

P(t, x||, x+ )=F dx0
+ Q(t, x||, x+ | x0

+ ) P+ (x0
+ ) (12)

where Q(t, x||, x+ | x0
+ ) denotes the probability density at time t conditioned

to the initial state x0
+ of the external variables, while P+ (x0

+ ) represents
their distribution. The integral over the ‘‘hidden’’ variables x0

+ represents
the first relevant difference with the previous case: the ignorance about
their values contributes to dressing the probability density. We will discuss
a bit this problem in the last section.

Anyhow, even disregarding the effect of the integral in the above
equation, the problem we have to deal with is more complex than the pre-
vious one. In fact, even if we consider initial conditions (x1

|| , x0
+ ), (x2

|| , x0
+ )

that differ only inside WL, the mutual difference does not remain confined
to WL, but rather spreads and propagate in the outer regions. Accordingly,
we are faced with the problem of defining, in this context, the Lyapunov
spectrum in a meaningful way. This is the goal of the next section.

However, before discussing the generalization of Lyapunov spectra to
open systems, we briefly present a heuristic explanation of Eq. (6), since its
derivation is based on the idea that a characterization of the invariant
measure over increasingly fine scales can be obtained from the evolution of
a set S0 covering the attractor. More precisely, in refs. 12, WL has been split
into two parts: the bulk B, where the effect of the external degrees of
freedom can be neglected (over the time t), and the boundary b, where
propagation must be, instead, taken into account. An upper bound to the
number of boxes needed to cover the attractor has then been estimated as
the product of the number of boxes needed to cover B, times the number of
boxes needed to cover b. In the computation of both quantities one is faced
with the difficulty of dealing with a continuous spatial variable. Such a
problem has been solved by introducing a proper discretization d. As a
result, it turns out that in the bulk, d=O(1), while, inside b, it is d=O(e).
The reason for the difference is that in the bulk, nearby configurations
change their mutual distances only as a result of local instabilities that are
of order 1. On the contrary, in b, the difference may also grow due to the
propagation of uncontrolled perturbations from the boundaries. Accord-
ingly, the fractal dimension is basically proportional to the number of
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lattice points introduced in the discretization process: in the first and
second term of the r.h.s. of Eq. (6), one can recognize the contributions
arising from the bulk and the boundaries, respectively. The latter one has
size O(1/e2), because the length of the boundary is estimated to be O(1/e).
Since in lattice systems there is a natural spacing, an extension of this rea-
soning to that context would lead to a correction term of order O(1/e), to
be confronted with the logarithmic correction predicted by Eqs. (3,5).
In the last section we will briefly discuss the possible reasons of such
a discrepancy.

4. LYAPUNOV SPECTRA OF OPEN SYSTEMS

It is several years that the concept of convective Lyapunov exponent
has been successfully introduced to describe how perturbations spread and
grow. This is done by measuring at time t the amplitude dx i(t) of an ini-
tially d-like perturbation (dx i(0)=d i

0) and determining its growth rate in a
frame moving with velocity v, (23)

Lc(v)=lim
t Q .

ln |dx i(t)|
t

, (13)

where i=vt.
It is known that whenever the spatial left-right symmetry is not

broken, the maximum value for Lc(v) is obtained for v=0 and it coincides
with the standard maximum Lyapunov exponent. Upon increasing the
velocity, the convective exponent decreases and becomes negative for
v > vc, to indicate that only perturbations moving with a velocity slower
than a critical velocity can be sustained.

One might imagine to generalize this procedure, by looking not just at
the amplitude of a single perturbation but to the volumes spanned by a
finite number of perturbations, very much in analogy to what done for
computing Lyapunov spectra in closed systems. However, if we entirely
follow the standard approach, we are bound to conclude that all the con-
vective exponents that can be associated to a given velocity coincide with
the maximal value. The reason for this conclusion is that, on the one hand,
the finite number of perturbations that are followed in time visit a space of
increasing (eventually infinite) dimension. On the other hand, the existence
of a limit Lyapunov spectrum means, as discussed above, that ll is a func-
tion of r=l/L alone, where l denotes the lth exponent, L being the length
of the system. Since in the above setup, the number of exponents is fixed
and equal to L, while the system size increases with time, one is basically
computing an increasingly thin portion of the Lyapunov spectrum and,
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eventually, all Lyapunov exponents become equal to the maximum one.
Stated otherwise, by implementing the usual closed systems approach,
without modifications, we compute the invariant Lyapunov spectrum, l(r),
restricted to a range 0 < r [ rmax q L/Leff, where Leff is the effective
dimensionality of the space explored, which increases indefinitely with time,
thus implying that rmax Q 0 when t Q ..

Although this is an inescapable conclusion, we now show that mea-
ningful results can be obtained even if perturbations are followed for a
finite time. A priori, one might think that computing over a finite time
implies that the corresponding quantity is ill-defined, because it would
depend on the choice of coordinates. However, in so far as time is finite but
arbitrarily large, this objection does not apply. This is for instance the case
of the so-called multifractal analysis of low-dimensional chaos. In the
present context there are two scaling parameters to deal with: the length L
and the time T. We eventually want to let both diverge to infinity. The
standard approach adopted in the literature consists in first letting T
diverge to infinity (this allows determining the Lyapunov spectrum of a
finite system) and then taking the thermodynamic limit L Q ..

The problem of choosing the most appropriate order in the problem at
hand is very similar to the problem mentioned in the introduction about
the order of the two limits L Q . and e Q 0 for a meaningful definition of
fractal dimension in open systems. We propose here to let T and L diverge
simultaneously, with fixed ratio,

g=T/L; (14)

i.e., given a subsystem of length L (embedded in a formally infinite chain),
we let perturbations evolve for a time T=gL. Our claim is that the corre-
sponding spectra converge, in the limit L Q ., to a specific shape that
depends only on g.

In order to be more precise, we start defining all the quantities of
interest. Consider L independent vectors {un(t)}, (n=1,..., L). Each un

denotes a perturbation initially restricted to a window WL of length L: (that
is, u (i)

n (0)=0 for i [ 0 and i > L, and n=1,..., L, where u (i)
n stands for the

ith component of the nth perturbation vector).
Although perturbations spread out of the initial window, we are

interested in their dynamics only within WL. Accordingly, we introduce the
projection operator

{PLun(t)} (i)=˛u (i)
n (t) if 0 < i [ L

0 otherwise.
(15)
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Let us then evolve the L vectors {un(t)} up to a time T=gL, and deter-
mine the volumes spanned by the projection of k such vectors (with k=
1,..., L), as one normally does in the computation of standard Lyapunov
exponents. In this way we can compute the Lyapunov spectrum over a time
T in a spatial window of size L.

This approach applies to any one-dimensional system, irrespective of
the continuity/discreteness of the space and time variables. However, for
the sake of computational simplicity, we shall restrict ourselves to consider
coupled map lattices. (24, 25) In particular, we will mainly refer to the typical
coupled map lattice with diffusive coupling,

x i(t+1)=f[(1− 2e) x i(t)+e[x i − 1(t)+x i+1(t)]]; (16)

where e is the coupling constant and f(y) is a map of the unit interval onto
itself.

In particular, we start considering Bernoulli maps, where

f(y)=a(y − [y]) (17)

and the square brackets denote here the integer part.
In Fig. 1, the spectra corresponding to the same ratio g=T/L=1,

but different lengths, have been plotted. One can clearly see a convergence
towards an asymptotic limit. The large deviation observed in the bottom
part of the solid curve is due to numerical inaccuracies. Indeed, these

0 0.5 1ρ
-1.5

-1

-0.5

0
λ

0 0.1 0.2 ρ-0.1

0

0.1

0.2
λ

Fig. 1. Open-system Lyapunov spectra of Bernoulli maps with e=1/3, a=1.2, and g=1.
Dot-dashed, dotted, dashed and solid curves correspond to L=24, 48, 96, and 192, respec-
tively. The last part of the solid curve is truncated because it is numerically unreliable. In the
inset, an enlargement of the region around the maximum is reported.
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spectra, that are obtained by letting the perturbations evolve in the whole
space and then projecting them onto the window of interest, require an
increasing accuracy for increasing elapsed time. For L=192 even
FORTRAN extended accuracy (equivalent to approximately 30 digits) is
no longer sufficient. Anyway, the inset clearly confirms the tendency to
converge towards a well defined asymptotic shape, so that one can mea-
ningfully introduce the concept of open-system Lyapunov spectrum l(r, g)
(OSLS).

The spectra reported in Fig. 2 correspond instead to different values of
g for a fixed length L. In the limit g Q 0, the effects of propagation outside
the initial window are negligible, so that l(r, g=0) reduces to the standard
Lyapunov spectrum. In fact, the lowermost curve corresponds to the ana-
lytically known expression for the standard Lyapunov spectrum. Upon
increasing g, the OSLS increases and for g Q ., we expect it to flatten
around the maximum Lyapunov exponent. In the inset of Fig. 2, we have
suitably rescaled the r axis. The rather good data collapse suggests that the
propagation of perturbations does not modify the spectrum structure, but
simply leads to an expansion of the r scale. Indeed, from the definition of
r=l/L, one can notice that the scale is controlled by the window length L.

However, as anticipated above, in the case of open-system simulations,
the space covered by each perturbation increases with time, so that it is
reasonable that the label l should be more properly scaled to some effective
length Leff rather than to the initial length L. Furthermore, it can be
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Fig. 2. Open-system Lyapunov spectra of Bernoulli maps with e=1/3, a=1.2, and L=96.
From bottom to top, the curves correspond to g=0, 1/4, 1/2, 1, and 3/2, respectively. In the
inset, the same spectra are plotted after rescaling the r axis according to the argument dis-
cussed in the text.
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conjectured that the effective length increases linearly in time as Leff=
L+2vT, with some velocity v (the factor 2 is included to account for the
growth on both sides of the window). Therefore, the ‘‘right’’ scaled variable
should be rŒ=l/[L+2vT]=r/(1+2gv), and, asymptotically, one expects
that l(r, g) converges to some l̃(rŒ). The good data collapse observed in
the inset Fig. 2 points in this direction, although, from the raw data we
cannot exclude that the apparent hyperscaling is only an approximation.
Indeed, the finite size corrections affecting the various spectra are of the
same order as the deviations among the various curves.

In order to study the dependence of the OSLS on g in a more quanti-
tative way, we proceed as follows. Given a spectrum l(r, g), we fix a
threshold ls and compute the quantity:

S(ls, g) q F (l(r, g) − ls) dr, (18)

where the integral is restricted to the interval of r-values where the integrand
is positive. For ls=0, S reduces to the well known Kolmogorov–
Sinai entropy. The dependence of S on g can be observed in Fig. 3 for three
different thresholds. The essentially linear behaviour confirms that the
increase is due to a propagation process, since the effective length increases
linearly with time, i.e., with g. If only one propagation velocity vs is present
in the evolution, each curve should increase as

S(ls, g)=S(ls, 0)(1+2vs g). (19)

0 0.5 1 1.5 2g

0.2

0.4

0.6
S

0 1 2g

1

1.2

1.4
S’

Fig. 3. The pseudo entropy S(ls, g) defined in Eq. (18) versus g for ls=−0.7, − 0.5, and
− 0.3 (from top to bottom), for Bernoulli maps with e=1/3, a=1.2, and L=96. In the inset
the same data are plotted, with the same symbols, after rescaling, giving the quantity SŒ(g)
defined in the text.
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Therefore, the curves obtained for different values of ls should, after
rescaling them to the same starting point, overlap. That is, if the velocity vs

does not depend on the threshold ls, then the plot of SŒ(g) q

S(ls, g)/S(ls, 0) should be universal. The inset of Fig. 3 reveals however a
weak dependence on ls: the slopes corresponding to the different thres-
holds are 0.23, 0.25, and 0.28, indicating that vs ranges in the interval
[0.11 − 0.14]. Whether the fluctuations are due to finite size corrections or
are an indication of a whole spectrum of velocities, we cannot say. The
increase of the velocity when ls decreases suggests, however, that the less
unstable directions are characterized by a more efficient propagation.

Bernoulli maps certainly represent the simplest model for testing the
spreading properties of perturbations in chaotic systems, but the peculari-
ties of the model (above all, the absence of fluctuations for the local mul-
tipliers) may invalidate the generality of the conclusions. Though this is not
true for the scaling properties of the standard Lyapunov spectrum, it is
nevertheless wise to repeat the analysis above for different models.

For this reason we now discuss the case of asymmetric tent maps, for
which

f(y)=˛y
b

if 0 [ y [ b

1 − y
1 − b

if b [ y [ 1.
(20)

While the simulations on this model have been performed for several
choices of the coupling e, and map parameter b, the results here presented
refer mainly to the (e, b)=(1/3, 3/4) case. Once more, we observe that the
OSLS converges to an asymptotic shape when simulations are performed
for increasing time (and thus window size) at a fixed value of g. Some
OSLS’s are plotted in Fig. 4, where we again see the same flattening ten-
dency for the spectrum and a similar collapse, as observed for the Bernoulli
maps. In order to test quantitatively the (visually suggested) hypothetical
hyperscaling, we again investigate the behaviour of the pseudo entropy
S(ls, g) for various choices of the threshold ls. The results plotted in Fig. 5
confirm what was found before, though indicating a more evident increase
in the slopes (in the rescaled representation) of the fits as ls is lowered, thus
reinforcing the idea that different velocities come into play.3 As before,

3 The simulations performed with a weaker coupling, e=1/6, show a qualitatively similar
behaviour, though, as expected, with a slower propagation, vS=0.05 ± 0.01.

decreasing the threshold ls, from +0.2 to 0.0 and to − 0.2, we observe an
increase in the velocity, vS=0.10, 0.12, 0.14, respectively, in agreement with
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Fig. 4. Open-system Lyapunov spectra of asymmetric tent maps, for a window of size
L=96, with coupling e=1/3 and b=3/4. From bottom to top, the curves correspond to
g=0, 1/4, 3/4, 1, and 3/2, respectively. In the inset, the same spectra are plotted after suit-
ably rescaling the r axis.

the interpretation, already suggested in the Bernoulli case, of a more effi-
cient propagation of disturbances along more stable directions.

Finally, as a prototype of a model with more than one variable per
lattice site and also as an example of a system with conservation of
volumes, we have studied coupled symplectic maps,

p i(t+1)=p i(t) − K[sin q i(t)+e(T i+1(t) − T i(t))]

q i(t+1)=q i(t)+p i(t+1),
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Fig. 5. The pseudo entropy S(ls, g), defined in Eq. (18), for the same tent maps of the pre-
vious figure, versus g. From top to bottom, it is ls=−0.2, 0.0, and+0.2. In the inset the ratio
SŒ=S(ls, g)/S(ls, 0) is plotted, with the same symbols.
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where T i(t) q sin[q i(t) − q i − 1(t)]. Consequently, for the evolution of per-
turbations, we have,

dp i(t+1)=dp i(t) − K[cos q i(t) − e(D i+1(t)+D i(t))] dq i(t)

− eK[D i+1(t) dq i+1(t)+D i(t) dq i − 1(t)]

and

dq i(t+1)=dq i(t)+dp i(t+1),

where D i(t) q cos[q i(t) − q i − 1(t)].
Again, different values of the parameters have been chosen, though we

present here just the results related to the case K=5 and e=1/6.
In Fig. 6, the OSLS in the case of a window of size L=96 (thus, for

2L=192 Lyapunov exponents) are shown, for several values of g. The
inset in the same figure points out the good scaling behaviour of these
spectra. Performing on them the same analysis as before, through the
computation of SŒ, we find a disturbance propagation velocity vs=0.050 ±
0.005 considerably smaller than in the previous cases, though it should be
stressed that the coupling strength is now smaller by a factor 2.

The velocities obtained through the analysis performed in this section
are basically the volume spreading velocities. As mentioned in the beginning
of this section, another velocity, vc, can be determined from the zero of
the spectrum of the convective Lyapunov exponents. In order to compare
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Fig. 6. Open-system Lyapunov spectra of coupled symplectic maps for L=96 (i.e., N=192
exponents). From bottom to top, the curves correspond to g=0, 1/4, 3/4, 1, and 3/2,
respectively. In the inset, the same spectra are plotted after suitably rescaling the r axis.
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the two velocities, we have computed also vc, using the procedure described
in ref. 26, to which we refer for more details. Here we limit to report the
results of the application of such a method to the models discussed in this
paper. In Table I, the two sets of velocities can be mutually compared. For
a meaningful comparison with the velocity obtained from the correspond-
ing convective spectra, we have reported there the value of 2vs, since the
effective length implicitly determined when estimating the Lyapunov spec-
trum over a time T, is the average length over such an interval and thus it
is half of the final length (if the growth is uniform, as we are assuming).
Therefore each velocity has to be doubled, if we want to make a direct
comparison with vc.

We see that in all the cases, the volume spreading velocity is signifi-
cantly different from (and smaller than) the propagation velocity of per-
turbations, thus indicating that at least two mechanisms exist in spatio-
temporal chaos that contribute to the propagation of information. Indeed,
a moment’s reflection reveals a crucial difference between the two veloci-
ties. On the one hand, we see that if the local multipliers change all by the
same constant factor, r, the resulting convective Lyapunov spectrum is
shifted by ln r and, as a consequence, the velocity vc, corresponding to the
crossing point with the v-axis, changes. On the other hand, the velocity vs

remains unchanged. In fact, we believe it is not by chance that vs turns out
to be approximately the same for the same values of the coupling strength
(see the table): it measures how the spatial coupling forces an ensemble of
perturbations to cover all neighbouring directions. Thus, in principle, it can
be defined even for a stable system. In a sentence, we could summarize
stating that vc reflects the (chaotic) features of the local dynamics, whereas
vs exploits the efficiency of the of the coupling in favouring the propagation
of information.

Table I. Synoptic Table Containing the Velocities Deter-

mined from the Open-System Lyapunov Spectra and from

the Zero of the Convective Lyapunov Spectra for the Classes

of Maps Discussed in the Text

Model 2vs vc

Bernoulli (e=1/3) 0.24 ± 0.03 0.48 ± 0.01
Tent (e=1/3) 0.24 ± 0.04 0.90 ± 0.01
Tent (e=1/6) 0.09 ± 0.02 0.64 ± 0.01
Symplectic (e=1/6) 0.09 ± 0.01 0.83 ± 0.01
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5. SCALING BEHAVIOUR OF THE INVARIANT MEASURE AND

CONCLUDING REMARKS

In this last section we exploit the knowledge of the scaling behaviour
of the OSLS to shed light on the corrections to the Kaplan–Yorke formula
arising from the spatial coupling. We start neglecting the integration over
the external degrees of freedom (see Eq. (12)). In this approximation, we
are entitled to use Eqs. (9) and (10), with the warning that now the
Lyapunov exponents do depend on time. Under the assumption that
hyperscaling holds, Eq. (11) still applies, with the length L replaced by its
effective value over a time T,

D̃KY(T, L)=d(1+2vg) L=dL+2 dv T (21)

In order to independently check the linear dependence of D̃KY on g, we
have studied the behaviour of dKY=D̃KY(T, L)/L, by integrating the
spectra obtained for different values of g, in the case of coupled Bernoulli
maps. From the above argument, we expect that dKY=d(1+2vKY g), where
vKY is, in principle, still another velocity of propagation, though much of
the same nature as vs.

The data plotted in Fig. 7 indicate indeed a quite clean linear growth.
The deviation of the value corresponding to g=1/4 is certainly due to
finite-size corrections, since it has been obtained for the shortest time
compared to the other points, while the datum corresponding to g=0
(dKY(0)=0.39) is obtained from the standard Lyapunov spectrum (see
ref. 27), and is therefore not affected by numerical convergence problems.
From the figure, the slope of the curve dKY(g) is 0.09 and from this (and
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Fig. 7. The scaled dimension dKY versus g, as computed from the Kaplan–Yorke formula,
for the Bernoulli coupled map lattice.
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from dKY(0)) it follows that vKY=0.12, well consistent with the value, vs,
obtained from the generalized KS-entropy approach.

We can now use Eq. (9) to transform the dependence of D̃KY on time T
into a dependence of DKY on the resolution e. Indeed, inverting Eq. (9), we
have

T=
ln e

ld
, (22)

where ld q l(r=d).
Inserting then Eq. (22) in Eq. (21), we obtain

DKY(e, L)=dL+
2vd
ld

ln e (23)

which again reveals a logarithmic dependence on the resolution. At variance
with the past derivations of similar formulas, however, the multiplicative
factor in front of the logarithmic correction follows now from a well doc-
umented discussion of the dynamical evolution.

However, we should not forget that the above formula represents a
lower bound on the dimension, DKY, since we have neglected the integral
over x0

+ in Eq. (12) that accounts for the uncertainty on the inner variables
induced by the initial lack of knowledge on the outer degrees of freedom.
An accurate quantification of the corresponding propagation of informa-
tion is far from trivial, since it may be controlled by nonlinear mechanisms
as it is known to happen in some situations. A typical case, where this is
certainly true is that of the so-called stable chaos, (28) i.e., of the irregular
behaviour emerging even in the presence of a negative Lyapunov spectrum.
In that case, no extensive contribution to D exists since d=0 and the pre-
viously discussed logarithmic correction is absent too. Nevertheless, finite-
amplitude perturbations may enter the window of interest carrying relevant
information.

In order to complement the lower bound above, we present here a
heuristic argument that allows us determining also an upper bound,
through an estimate of the effect of the disturbances propagating from the
boundaries into the region of observation. It should be clearly stated that
the validity of the following argument relies on the assumption that non-
linear mechanisms are negligible.

From the convective Lyapunov exponents, we know that a perturba-
tion originating at the boundary at time 0, is amplified by a factor
exp Lc(a/T) T, after a time T at a distance a. Let us assume that, according
to Eq. (22), the time T corresponds to a resolution ln e/ld. Then, the
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maximum distance travelled by the external perturbation while still being
larger than e can be implicitly determined by the equation

ld=Lc(a/T)=Lc
1 ald

ln e
2 . (24)

Let now vŒ denote the velocity such that Lc(vŒ)=ld (if the whole convective
spectrum is larger than ld, vŒ must be assumed equal to the maximal pos-
sible velocity, which, in the case of nearest neighbour coupling, is just equal
to 1). Eq. (24) implies that

a=
vŒ

ld
ln e. (25)

By assuming that the distribution of the state variable is independent in all
the a sites, one finds that fa (where f denotes the number of variables per
lattice site), represents an upper bound to the correction due to the external
degrees of freedom. Accordingly, this correction has again the same struc-
ture as the previous one; altogether, one finds that

Dc(e, L) [ dL+
2(dv+fvŒ)

ld
ln e. (26)

Thus, we see that the dependence of the effective dimension on e remains
weaker than the 1/e behaviour deduced indirectly from the treatment in
ref. 12. We interpret this as the indication that the rigorous bound deter-
mined in ref. 12 can be improved. Neverthless, a more detailed under-
standing of the propagation of perturbations is also required, in order to
shed further light on the exact structure of the logarithmic corrections. We
are currently exploring the possibility to directly quantify the amplitude of
volume-perturbations in a simplified class of systems where most of the
calculations can be carried on analytically. (29)

The above analysis has been performed under the implicit assumption
that |ln e| < aL (where a is a suitable dimensional factor). This limitation is
equivalent to the one encountered in the paper by Collet & Eckmann, (12)

where it is stated that the bound (6) applies only in the region where
e > a/L. The reasons for these limitations are due to nonlinear effects. In
the previous section we have seen that in the linear approximation any
perturbation, initially restricted to WL, sooner or later diverges along all the
L existing directions (inside the window). However, nonlinear corrections
may become important much before the amplitude of the perturbation
becomes of order 1 inside WL. Indeed, we have seen that perturbations
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grow outside WL, too; in particular, those that initially decay inside WL,
grow outside the window. As soon as their amplitude becomes O(1) in the
outer part, the effect of nonlinearities cannot be any longer neglected even
inside WL, though their amplitude is therein very small. Since we have seen
that high resolutions correspond to relatively long time, we cannot expect
our approach to hold for those tiny scales where |ln e|/L is no longer small.

In this paper we have shown that in 1-dimensional spatially extended
systems, besides the standard propagation process, fully described by the
spectrum of convective Lyapunov exponents, there exists a further mecha-
nism controlling the volume-spreading of perturbations. This result follows
indirectly from the scaling properties of suitable Lyapunov spectra, intro-
duced with the goal of extending the Kaplan–Yorke formula to open
systems. It would be very helpful if an equivalent but more direct definition
could be introduced to account for this spreading process.

It is now worth commenting about the relationship between the open-
system Lyapunov exponents introduced in this paper and the previously
devised chronotopic Lyapunov approach. (30, 31) There, it was conjectured
that all linear stability properties of 1d spatially extended dynamical systems
can be obtained from the entropy potential: a function of the spatial and
temporal growth rate of generic perturbations. Although we have not been
able to find the specific link with the OSLS, there is no reason to think that
the information contained in that class of Lyapunov spectra is not con-
tained in the entropy potential. Finding the relationship between the two
approaches would be very interesting not only from a conceptual point of
view, but also because it would allow for a much easier computation of the
OSLS. We must, indeed, recall that an accurate determination of Lyapunov
spectra in open systems is hindered by the high accuracy that it requires:
this limitation is certainly crucial in the context of continuous space-time
systems such as, e.g., the complex Ginzburg–Landau and the Kuramoto–
Sivahsinsky equations.

Finally, we expect the open system approach to be of some relevance
also in connection with the nonequilibrium dynamics of Hamiltonian
systems. For instance, in ref. 32, Gallavotti was interested in the expansion
rate of local (in space) volumes. This is nothing but the function S, defined
by Eq. (18), for ls corresponding to the minimum Lyapunov exponent.
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